
3DSS-API 技術ドキュメント
3D Shape Share 共通データAPI

Base URL:

https://us-central1-shapeshare3d.cloudfunctions.net/api

構成情報:

Firebase プロジェクト: shapeshare3d

Cloud Functions エントリ: api（Express を内包）

役割:

Firestore に保存された公開3Dモデルのメタ情報を JSON で提供。

将来的に users / boards / articles / analytics を拡張。

目次

1. 表紙 - 3DSS-API 技術ドキュメント

2. 目次

3. 3DSS-APIの全体像

4. プラットフォーム層とアプリ層の関係

5. 現在のAPI仕様 - エンドポイント一覧

6. API仕様詳細 - モデル一覧取得

7. API仕様詳細 - 単一モデル取得

8. 他のアプリからの利用方法 - 基本的な使い方

9. React/Viteでの実装例

10. CORSとセキュリティ設定

11. 新規アプリ開発の作法

12. 今後の拡張計画

3DSS-APIの全体像（何者か？）

インテリアかる

た

Webプレゼン シミュレーショ

ン

Firestore Storage Auth

• プロジェクト名: 036-3dss-api（ローカルのAPI専用プロジェクト）

• Firebase プロジェクト: shapeshare3d（本番の3D Shape Shareと同じ）

• Cloud Functions のエントリ: api

• 主要ルート:

GET /models/v1 - モデル一覧取得

GET /models/v1/:id - 単一モデル取得

役割:

3D Shape Share の Firestore に保存されているモデル情報を JSON で返す「窓口」

として機能

将来的には /users/v1 , /boards/v1 , /articles/v1 なども追加予定

3DSS-API

Cloud Functions + Express

プラットフォーム層とアプリ層の関係

アプリ層（各アプリケーション）

インテリアかる

た

Webプレゼン シミュレーショ

ン

https://us-central1-

shapeshare3d.cloudfunctions.net/api/...

• プラットフォーム層（3DSS-API）

3Dモデル、ユーザー、チーム、ボード、共通タグなど

すべてのアプリで共有されるデータリソース

• アプリ層（インテリアかるた / Webプレゼン / シミュレーション）

それぞれ独自の Firestore / DB を持ってOK

ただし「3Dモデル」など共通で使いたい情報は 3DSS-API 経由で取得

• 原則: 各アプリは ID のみを保持

modelId / userId / boardId 等のIDを参照として保存

詳細データは API から動的に取得

メリット:

どのアプリからでも Base URL を叩けば、同じ共通3Dデータにアクセス可能

データの整合性が保たれ、アプリ間でのデータ連携が容易に

プラットフォーム層（3DSS-API）

共通データへのアクセス窓口

3Dモデル ユーザー チーム

ボード 共通タグ

現在のAPI仕様 - エンドポイント一覧

Base URL

https://us-central1-shapeshare3d.cloudfunctions.net/api

GET /models/v1?limit=...

モデル一覧（学習/デモ用）を取得します。

クエリパラメータ: limit - 返す件数（任意。デフォルト10）

GET /models/v1/:id

単一モデルの詳細情報を取得します。

パスパラメータ: id - モデルのID（必須）

レスポンス要約

• id モデルの一意識別子

• slug URL用識別子

• title モデル名

• thumbnailUrl サムネイルURL

• category カテゴリパス

• modelFormats[] 提供フォーマット

• dimensions サイズ情報

• tags[] 関連タグ

200 正常にデータ取得 404 モデルが見つからない場合

API仕様詳細 - モデル一覧取得

GET /models/v1?limit=5

モデル一覧を取得するためのエンドポイントです。学習やデモ用として使用します。

クエリパラメータ：

limit - 返す件数（任意。デフォルトは10）

 レスポンスは items配列内のオブジェクトとして返され、ページネーションや検索機能は今後拡張予定です。

レスポンス例 200 OK

{

"items": [

{

"id": "0052b495-4cf6-42be-b597-ea83340a86c9",

"slug": "0052b495-4cf6-42be-b597-ea83340a86c9",

"title": "ハンギングポット",

"thumbnailUrl": "https://firebasestorage.googleapis.com/...",

"category": "lighting/pendant",

"modelFormats": [],

"dimensions": null,

"tags": []

},

{

"id": "43547c5c-d73a-47d8-890d-73ef8a54e07d",

"slug": "43547c5c-d73a-47d8-890d-73ef8a54e07d",

"title": "BlueUnicorn",

"thumbnailUrl": "https://firebasestorage.googleapis.com/...",

"category": null,

"modelFormats": [],

"dimensions": null

API仕様詳細 - 単一モデル取得

GET /models/v1/:id

IDを指定して単一の3Dモデル情報を取得するためのエンドポイントです。

例：

/models/v1/0052b495-4cf6-42be-b597-ea83340a86c9

 インテリアかるたアプリでは、このエンドポイントを使用して3Dモデルのメタデータを取得しています。

成功時のレスポンス例 200 OK

{

"id": "0052b495-4cf6-42be-b597-ea83340a86c9",

"title": "ハンギングポット",

"thumbnailUrl": "https://firebasestorage.googleapis.com/...",

"category": "lighting/pendant",

"modelFormats": [],

"dimensions": null,

"t " []

存在しない場合のレスポンス例 404 Not Found

{

"error": "Model not found"

}

基本の使い方（fetch）

ブラウザまたはNode.jsでの基本的な使い方です。標準のfetch APIを使用した実装例を示します。

 環境変数 VITE_3DSS_API_BASE_URLを設定すると、開発環境やテスト環境など異なる環境でAPIのベースURLを切り替えることができます。

 使用例： fetchModels({ limit: 20 }).then(data => console.log(data.items))でモデル一覧を取得できます。

基本実装例 JavaScript/TypeScript

const BASE_URL =

import.meta.env.VITE_3DSS_API_BASE_URL ||

"https://us-central1-shapeshare3d.cloudfunctions.net/api";

// モデル一覧取得
async function fetchModels({ limit = 10 } = {}) {

const res = await fetch(`${BASE_URL}/models/v1?limit=${limit}`);

if (!res.ok) {

throw new Error(`Failed: ${res.status} ${res.statusText}`);

}

return await res.json(); // { items: [...] }

}

// 単一モデル取得
async function fetchModelById(id) {

const res = await fetch(`${BASE_URL}/models/v1/${encodeURIComponent(id)}`);

if (!res.ok) {

throw new Error(`Failed: ${res.status} ${res.statusText}`);

}

return await res.json(); // { id, title, ... }

}

React/Vite実装例（共通クライアント）

FILE src/threeDssApi.js

どのReactアプリでも共通で使える3DSS-APIクライアントモジュール

 環境変数 VITE_3DSS_API_BASE_URLを.envファイルで設定することで、開発環境や本番環境で異なるAPIエンドポイントを指定できます。

共通クライアント実装 threeDssApi.js

export const THREE_DSS_API_BASE_URL =

import.meta.env.VITE_3DSS_API_BASE_URL ||

"https://us-central1-shapeshare3d.cloudfunctions.net/api";

export async function fetchModelById(modelId) {

if (!modelId) throw new Error("modelId is required");

const url = `${THREE_DSS_API_BASE_URL}/models/v1/${encodeURIComponent(modelId)}`;

const res = await fetch(url);

if (!res.ok) {

const text = await res.text().catch(() => "");

throw new Error(

`Failed to fetch model ${modelId}: ${res.status} ${res.statusText} ${text}`

);

}

return res.json();

}

export async function fetchModels({ limit = 10 } = {}) {

const url = `${THREE_DSS_API_BASE_URL}/models/v1?limit=${limit}`;

const res = await fetch(url);

利用例（React） ModelList.jsx

import { useState, useEffect } from 'react';

import { fetchModels, fetchModelById } from './threeDssApi';

export default function ModelList() {

const [items, setItems] = useState([]);

const [loading, setLoading] = useState(true);

useEffect(() => {

fetchModels({ limit: 20 })

.then(data => setItems(data.items))

.catch(err => console.error(err))

.finally(() => setLoading(false));

}, []);

return (

{loading ? '読み込み中...' : `${items.length}個のモデルを表示中`}
);

}

CORS とセキュリティ設定

 現状のアプローチ 現在の設定

 公開モデルを誰でも読めることを目的としています

 Express 側で CORS を全許可設定（ origin: true ）

 Firestore セキュリティルールで「public モデルだけ read を許可」

 Express 設定例

const functions = require("firebase-functions/v2/https");

const express = require("express");

const cors = require("cors");

const app = express();

// CORS を全世界許可（練習用）
app.use(cors({ origin: true }));

app.use(express.json());

// ここに /models/v1 などのルートを定義
// ...

exports.api = functions.onRequest(app);

 将来の強化ポイント 計画中

 CORS の origin をホワイトリスト方式に変更
例: ["https://3dshapeshare.com", "https://your-other-app.com"]

 読み取り以外の操作に認証を要求

・Firebase Auth トークン または

・独自の API キー

 お気に入り登録・ボード保存・削除などの書き込み系操作は厳格に保護

新規アプリ開発の作法（テンプレ）

クライアントモジュールを置く

各アプリにAPI呼び出し用のモジュールを配置します：

threeDssApi.js （JS版）または threeDssApi.ts （TS版）

 このモジュールがSDKの役割を果たし、全アプリで統一した呼び出し方ができます

1

環境変数で BASE_URL を設定

フレームワーク別の環境変数設定：

Vite / React (.env.local)

VITE_3DSS_API_BASE_URL="https://us-central1-shapeshare3d.cloudfunctions.net/api"

Next.js (.env.local)

NEXT_PUBLIC_3DSS_API_BASE_URL="https://us-central1-shapeshare3d.cloudfunctions.net/api"

Node バックエンド (.env)

THREE_DSS_API_BASE_URL=https://us-central1-shapeshare3d.cloudfunctions.net/api

2

アプリ固有のデータと modelId の紐付け

アプリのエンティティに 3DSS モデル ID を参照フィールドとして持たせます：

{

id: "ne-nekko",

syllable: "ね",

keyword: "根っこのコンセプト",

modelId: "0052b495-4cf6-42be-b597-ea83340a86c9", // ← 3DSS モデルとの紐づけ
// その他アプリ固有のフィールド
}

3

画面で必要なときに API を呼び出す

インポートして使用：

import { fetchModelById, fetchModels } from "./threeDssApi";

// 一覧表示画面などで
useEffect(() => {

fetchModels({ limit: 20 }).then((data) => setItems(data.items));

}, []);

// 詳細画面では
useEffect(() => {

if (modelId) {

fetchModelById(modelId).then((model) => setModelData(model));

}

}, [modelId]);

これでどのアプリからも統一的なインターフェースで 3D モデルデータにアクセスできます。

4

今後の拡張計画

/models/v1/search /users/v1/:id /boards/v1/:id

Unity Unreal Rhino

プラグイン経由でのアクセス

• エンドポイント拡張:

/models/v1/search - キーワード・タグ・カテゴリで検索

/models/v1/:id/files - glb, 3dm等のダウンロードURLやメタデータ

/users/v1/:id - ユーザーの公開プロフィール

/boards/v1/:id - 公開ボードのサマリ

• 運用ルール:

共通データはぜんぶ「3DSS-API 側」に集める

各アプリは「modelId / userId / boardId を持つだけ」で詳細はAPIから取得

次のステップ候補:

/models/v1/search の追加 - カテゴリ/キーワード検索API

/boards/v1/:id の作成 - ボード単位でモデル一覧を取得する機能

3DSS-API 拡張版

将来のエンドポイント群

